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1 Introduction  

A policy is a statement that guides decision making and indicates the general direction of an 

enterprise and is usually in the form of a procedure or protocol. Policies that assist in objective 

decision-making are usually operational in nature and can be objectively tested. For example a 

password policy is an objective operational policy.  

Corporate operational policies that describe who can perform what actions on what objects are 

problematic especially when they are implemented in software. Policies incorporated into an 

enterprise resource planning (ERP) system or across a financial institution can be especially 

troublesome as a large percentage of policies are buried in software and hidden from human 

scrutiny. Mergers and acquisitions are also a problem as firms now need to confirm that policies 

are correct as they are amalgamated.  

Testing is one way to have limited confidence in the correctness of a policy’s software 

implementation. However, testing shows that the software passes the test, it does not show that 

the implementation has overall correct behaviour in a given situation. To quote Dijkstra [4] 

“testing shows the presence of bugs (errors) not their absence.” Even policies that are primarily 

implemented by people can have incorrect behaviour, although there is the basic safeguard of 

individuals deciding whether what a policy permits makes sense.  

Software engineering practitioners have developed mathematical approaches and tools 

(sometimes called formal methods) over the last four decades that have allowed them to 

determine the correctness of portions of a software system. These methods have been applied 

most often in safety critical systems such as ones controlling aircraft or nuclear power plants. For 

example, the description of the program or software system is translated into mathematical logic 

and then this version of the software is checked to see if it satisfies certain properties. However, 

these techniques are not readily accessible to the business community as they require advanced 

mathematical knowledge to apply them and are quite expensive to use in terms of time and 

expertise.  

Recent work by Karimi [11] on policies related to access control has indicated a direction that 

looks quite promising in its ability to make a significant subset of these formal methods available 

to the accounting and business community to check the correctness of operational policies in 

general. Although there is still some mathematical logic involved its presence in the methods has 

been substantially reduced through the use of patterns [11]. 

This paper outlines the approach by describing the overall model and then applying it to Role-
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based Access Control (RBAC) [6]. RBAC is a model underlying operational security policies 

that are frequently used in business software systems to control access and updates to specific 

business information. In this case RBAC or similar access control models are used to create the 

access control rules for a business and then these rules are combined into business security 

policies, which are further made into policy sets. For example, a rule is: “a teller may deposit a 

customer’s money into the customer’s account” or another rule is: “an account representative 

may deposit money and may also change personal information.” In contrast a simple policy 

would be “a teller or account representative may deposit money into a customer’s account and an 

account representative may change personal account information.” A policy set may be: “a 

manager has all the privileges of an account representative and may also open accounts” along 

with the previously mentioned policies about tellers and account representatives. Of course 

policies and policy sets are significantly more complex than these examples. 

In this paper we have deliberately kept the examples simple so as not to overcomplicate the 

methods being demonstrated. For more complex examples the reader can refer to [11]. 

 

2 The Approach  

The approach just described is based on the Resource-Event-Agent (REA) model [13, 9], which 

was developed by McCarthy and his colleagues in the business and accounting community to 

describe business systems. Once the rules are described in REA they are formed into policies and 

a policy set using a state machine, which is a very simple concept. This total model is encoded 

and provided as input to a software tool called the SPIN model checker [8]. Properties that need 

to be verified are written in English and then easily translated into a simple form of mathematical 

logic [10]. The properties are then input to the model checker and the output from the program 

will determine if the property is valid. An example of a property is: “a teller can always deposit 

into a customer account?” Figure 1 illustrates this approach to checking properties of business 

policies.  

 

Figure 1: Checking properties against a model 

 

3 Resources, Events, Agents (REA)  

Resources, events, agents (REA) is a model of how an accounting system can be re-engineered 

for the computer age. REA was originally proposed in 1982 by McCarthy as a generalized 

accounting model, and is a popular model in teaching accounting information systems. REA can 

be described by entity relationship models [2] or UML diagrams [1].  

The REA model does not use certain standard accounting objects. Many artifacts of the debits 

and credits double-entry bookkeeping system including general ledger accounts such as accounts 
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receivable or accounts payable are not modeled in the REA approach as persistent objects or 

database entries since they can be generated by the computer.  

REA treats the accounting system as a model of the actual business. In other words, it creates 

computer objects that directly represent real-world-business objects. The real objects included in 

the REA model as shown in Figure 2 are:  

• resources - goods, services or money  

• events - sales or maintenance activities  

• agents - people or other human agencies such as companies that provide or receive events  

 

An REA model as shown in Figure 2 has a pair of events, linked by a “duality” relation. One of 

these events usually represents a resource being given away or lost, while the other represents a 

resource being received or gained.  

 

Figure 2: The basic REA model  

In the sales process, such as the sale of a book as shown in 3 [9] one event would be “BookSale,” 

where goods are provided and the other would be “Cash Received,” where cash is provided in 

exchange for the book. Thus, these two events are linked; a cash receipt occurs in exchange for a 

sale, and vice versa. The duality relationship can be more complex as in the manufacturing 

process, where more than two events are involved. These objects contrast with conventional 

accounting terms such as asset or liability, which are less directly tied to real-world objects.  

 

Figure 3: An REA basic example  

There is a separate REA pattern for each type of business process in the company or 

organization. A business process roughly corresponds to a functional department, or a function. 

Examples of business processes would be sales, purchases, conversion or manufacturing, human 

resources, and financing. An example of a sales or exchange pattern or process, that is 

exchanging cash for a commodity, is in the example in 3. The patterns are extended to 
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encompass commitments (promises to engage in transactions, e.g., a sales order), policies, and 

other constructs. Two good overviews can be found in [5, 9].  

Since REA systems can be modeled using entity-relationship diagrams or UML, they can be 

implemented as relational or object-oriented databases. 

4 Role-based Access Control  

The RBAC model [6] was introduced in 1992 as a generalized model of access control by 

adapting existing role-based access control approaches. RBAC [7] introduces roles between 

users and permissions, and permissions are assigned to roles instead of to users. RBAC is a 

conceptually simple model in which access to an object such as a bank account is determined by 

the role of a subject such as teller. For example, Sally (user) is a teller (role) and a teller can 

deposit funds into a bank account (object). “Deposit funds into a bank account” is an operation 

(deposit funds into) on an object (bank account) and together they constitute a permission. 

Therefore a teller can deposit funds into a bank account. Basically management creates roles and 

permissions on classes of objects and then assigns users to the roles. 

This arrangement makes permission assignment easier because permissions related to roles 

change less frequently than permissions related to users (i.e., people change jobs or are assigned 

to various roles more often than permissions for roles would be changed). In addition, an 

estimate indicates that the number of roles is about 3-4% of the number of users [14]; and over 

time each individual (user) can take multiple roles in an organization. RBAC has been used 

frequently in commercial systems.  

Figure 4 provides a simple picture of the RBAC model. The double arrow connecting users and 

roles indicates that users can be assigned roles and roles can be assigned to users, in other words 

there is a two-way relationship between users and roles. The double arrow connecting roles and 

permissions (PRMS) indicates a two-way relationship between these two entities where roles can 

have permissions and permissions are assigned to roles. Finally permissions are modeled as 

operations (OPS) on objects (OBS); again there is a two-way relationship between operations 

and objects. Additional constraints may be applied as well to the model and roles can be 

combined into a hierarchy where higher-level roles subsume permissions owned by lower-level 

roles. However the simple picture in Figure 4 is adequate for our explanation.  

 

Figure 4: A simplified RBAC model  

The next step is translating the RBAC model into the REA modeling language. Each type of role 

is an agent (A) and each type of object is a resource (R). The event (E) is the occurrence of an 

operation on a resource. The permission is whether the event related to an object can occur. As 

well as these three objects we must show that the agents, resources and events are related. A 

relationship exists between resources and events and between agents and permissions. We can 
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simplify the relationship between agents and permissions to a relationship between agents and 

events, because the event is part of the permission and is connected to the resource. We will use 

these relations later in developing our approach further. These relations can be written as 

Rel(R,E) and Rel(A,E). In RBAC a subject or person holding a role such as a teller has 

permission to complete an action or event such as deposit money in an account. In this example 

the account is the resource (R), deposit money is an event (E) and the teller is the agent (A). 

Thus, there is a mapping from the RBAC policy into the REA modeling language. In the next 

section we illustrate how to formalize the RBAC policy in terms of REA so that it can be 

processed by a model checker.  

5 Translating Rules in English into REA Machine-processable Statements  

Although the rule “a teller has permission to deposit funds into an account” is clear enough 

and could probably be processed directly by a computer; more complex rules and policies 

written in English will be impossible to parse and divide into manageable components. 

Therefore we must have a structured approach to expressing rules and policies. In this section 

we focus on rules and then in the next section show how these can be combined into policies. 

We will use the earlier statement about tellers and depositing money into an account to 

illustrate the approach. We continue to use the simple banking example so that the principles 

of our approach are clear. For more complex examples see [11]. 

Example: A teller can deposit funds into savings accounts.  

First let us identify the resource, event and agent and show how we can encode them for 

machine processing.  

• A savings account represents a resource; so we encode it as Resource(savings accounts).  

• Deposit is a verb and represents an event and is written as Event(deposit).  

• A teller represents an agent and so we write Agent(teller).  

 

However this first step has only identified the resource, event and agent. We still have to 

recognize that saving accounts, deposits and tellers are related. There are several possible 

ways to encode these relationships. We choose to indicate that tellers are related to the event 

deposit and savings accounts are related to the same event. Since deposits are common to both 

relationships we can infer that tellers are related to savings accounts. We write the relation 

between agent and event as RELAE(Agent, Event) and the one between resource and event as 

RELRE(Resource, Event). Thus, the relation between teller (agent) and deposit (event) is 

written as RELAE(teller, deposit) and between savings account (resource) and deposit (event) 

as RELRE(savings account, deposit).  

We have specified the resource, event and agent and their relationships. However we are still 

missing one component, namely the statement that deposit access is permitted. This is 

encoded as DepositAccess(Permit).  

We can now write that if the agent is a teller and if the resource is an account and if the event 

is deposit and there is a relationship between teller and deposit and between savings account 

and deposit, then deposit is permitted. This statement can be encoded as:  
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Resource(savings accounts) and Event(deposit) and Agent(teller) and RELRE(savings 

account, deposit) and RELAE(teller, deposit) implies DepositAccess(Permit)  

In mathematical terms the statement would appear as:  

Resource(savings accounts) ∧ Event(deposit) ∧ Agent(teller) ∧ RELRE(savings account, 

deposit) ∧ RELAE(teller, deposit) → DepositAccess(Permit)  

In this form “and” has been replaced by “∧” and implies by “→.”  

One can view this rule as an assumption followed by a conclusion. The assumption is that we 

have an agent(teller), resource(savings account) and event(deposit) and the relationships among 

them. Further if these all hold, then the conclusion is that deposit is permitted 

(DepositAccess(Permit)). 

What we have specified is a general rule for tellers depositing funds into a savings account. We 

could also specify that tellers could only deposit funds into accounts held at the branch where 

they work. The rule is meant to specify categories of accounts and to limit the range of actions 

that can be performed. 

6 Policy Representations and Combinations using State Machines  

Policies are combinations of one or more rules and policy sets are combinations of policies. Once 

a model of a policy or policy set is created it can be queried to see if it has certain properties. 

This process is called property verification. A property is stated (see Section 8) in much the same 

way we have described rules and then the property is verified by running or checking it against 

the policy set as shown in Figure 1. 

Rules and policies can be organized into policy sets in different ways depending on how the 

business wishes to operate. In one possible option we can check a property or query such as “can 

a manager open an account?” In this case we can look through the policy set until we match that 

query, determine whether it is permitted or denied and then not proceed further. Of course if we 

never match the query then the property does not exist in the policy set and we say it is “does not 

hold.” This organization of rules into policies and policy sets is called “first-applicable,” in that 

the first time the query is encountered determines the outcome. 

Another possibility exists when a business adds a rule that negates a rule that was permitted 

earlier in the policy set. In this case we want to examine all rules in a policy to make sure that 

one rule that is approved is not negated by a later rule. Such an organization of rules and policies 

is called “ordered-deny-overrides.” 

Another further possible organizational strategy is called weak-majority. This evaluation states 

that we must proceed through all the policies and record every time a rule is permitted and every 

time one is denied. If a rule is permitted more times than it is denied then rule is permitted. In 

this case the evaluation must record the history of each permit or deny decision.  

The state machine concept that is described next supports all ways of organizing rules [15, 

Error! Reference source not found., 17] that have been reported in the literature including the 

ones just mentioned. Rules are combined into policies using state machines and policy sets can 

composed from policies also using the same state machine concept. A state machine can be 
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represented as a diagram consisting of nodes (or states) and transitions. Two states, s10, and s11, 

are shown in Figure 5 where the states are represented by rounded rectangles with the names s10, 

and s11 inside.  

 

Figure 5: Two states  

A transition from one node or state to the other is shown by a uni-directional labeled arrow. For 

instance, a transition from node or state s10 to s11 with a label “timeout” is shown in Figure 6. The 

label is usually interpreted literally; in this case a time has expired and caused the transition from 

s10 to s11.  

 

Figure 6: Two states with a transition  

We now provide examples to describe how to represent and combine policies using state 

machines.  

 

A Simple Example: A teller can deposit in savings accounts. This rule or simple policy can be 

viewed in two parts: an assumption or premise and a conclusion. The assumption for this 

example consists of the fact that there is a teller, deposit, and savings accounts and there are 

relationships among them as described in Section 5. The conclusion is whether the event deposit 

is permitted deposit or denied. In this example access to deposit is permitted. We repeat the rule 

from the end of Section 5 in two parts.  

Assumption or premise (p-rule1): Resource(savings accounts) ∧ Event(deposit) ∧ 

Agent(teller)∧ RELRE(savings accounts, deposit) ∧ RELAE(teller, deposit)  

Conclusion or consequence (q-rule1): DepositAccess(Permit)  

This policy can be represented as shown in Figure 7. State s00 in this Figure contains the text or 

pattern that describes the assumption of the rule. When a property (to be described in Section 8) 

is compared against the premise of the rule it either matches or it does not. If there is a match 

the next state to be entered is s11 as the premise (p-rule1) is true. If there is no match then p-rule1 

is false and state s10 is entered. For this example, it means that we are dealing with a policy that 

indicates an agent is a teller, the resource is savings accounts, the event is to deposit and there is 

a relationship among these three entities.  

If there is a transition to state s11 then it will be decided if the conclusion (q-rule1)
1
 
 

matches the 

similar text in the property being examined. In this example, q-rule1 = permit is the outcome as 

access is allowed that is, a teller is authorized to deposit into savings accounts. Note that there 

are two transitions from state s11. These transitions go to two final states labeled permit or deny.  

                                                           
1 We use q-rule rather than c-rule because of the conventions of our logic representation.  
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We have developed a convention for labeling states. The initial state of the state machine is s00. 

Once past the initial state the initial digit of the state name is 1 or greater and indicate(s) the rule 

number. The last digit indicates whether the assumption of that rule holds (i.e., true = 1) or does 

not hold (i.e., false = 0). For instance,  

s11: the state in which we arrive if rule 1’s assumption holds.  

s10: the state in which we arrive if rule 1’s assumption does not hold.  

 

 

Figure 7: A representation of policies using state machines  

Each state, with the exception of final states, can have a transition to another intermediate state 

sij where it is being evaluated further or to a final state which indicates the outcome of the policy 

that combines the rules. Such final states are shown as circles with an enlarged black centre as 

in Figure 7. Now, we show how to add further rules and thus states to the state machine through 

another example.  

Example: A loan officer can modify loan accounts. In this case the resource is the loan accounts, 

the event is modify and the agent is loan officer and there is a relationship between loan officer 

and modify and between loan accounts and modify. We can rewrite this rule as shown next.  

Assumption or premise (p-rule2): Resource(loan accounts) ∧ Event(modify) ∧ Agent(loan 

officer) ∧ RELRE(loan accounts, modify) ∧ RELAE(loan officer, modify)  

Conclusion or consequence (q-rule2): ModifyAccess(Permit)  

Figure 8 shows the augmented state machine. In this case the pattern representing p-rule2 is 

contained in state s10. If the property matches the pattern then p-rule2 is true and the state 

machine enters state s21. If the property does not match the pattern then p-rule2 is false and the 

state machine enters s20. If the state machine enters state s21 q-rule2 is compared to the pattern of 

the property. If they match the state machine goes through the transition labeled q-rule2 = permit 

to the final state permit, otherwise to the final state deny. 
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Figure 8: The combination of policies using state machines with the first applicable combination 

 
Suppose we add a rule that negates a previous rule in the policy set. For example we add the rule:  

Assumption or premise (p-rule2): Resource(savings accounts) ∧ Event(deposit) ∧ Agent(teller) 

∧ RELRE(savings accounts, deposit) ∧ RELAE(teller, deposit)  

Conclusion or consequence (q-rule2): DepositAccess(Deny).  

If we insert this rule later in the policy set using the ordered-deny-overrides combination then 

we get Figure 9. In summary, according to the main idea behind this combination if there is any 

deny, you stop and the result is deny, and if there is no deny and at least one permit the result is 

permit. Note that the evaluation continues reaching the permit-seen state and is shown as 

transitions from permit-seen to two other states to make sure there is not another rule with a 

deny result. Of course, if the conclusion of rule 1 is deny, we go from the state S11 to deny (not 

shown in order to make figure 9 simpler). 

                    

       
                Figure 9: The combination of policies using state machines with ordered-deny-overrides 

combination 
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7   Encoding the Model in a State Machine  

The state machines just described in Section 6 can be encoded for the SPIN model checker [8] 

using a language called PROMELA. The PROMELA language strongly resembles the C 

programming language [12]. However in this paper we will use a simple version of PROMELA 

represented as pseudo-code. In other words, programming without all the subtleties that take a 

long time to learn. The pseudo-code in Figure 10 shows one possible description of this 

encoding. In this case, the pseudo-code describes the examples of the state machines in (Figure 7 

and Figure 8). The statement “if premise-rulei does not hold” states that the pattern encoded in 

rulei is compared to the property being checked and if they do not match then we keep trying.  

for i = rule1 to rulen do  

if premise-rulei does not hold  

continue evaluation  

else  

if premise-rulei holds  

then the consequence rulei applies (either permit or deny)  

exit evaluation  

end-if  

end-if  

Figure 10: Pseudo-code for the state machine  

In this case, which encodes the first-applicable [15, Error! Reference source not found.] 

combination of rules into the policy set, when a correct policy is found, the procedure is finished, 

and there is no need to look at other rules. This pseudo-code represents the first applicable state 

machine which accepts the first property that is correct. Other configurations that involve 

remembering what has happened as a property is verified can also be encoded. Examples are 

ordered-permit-overrides [15, Error! Reference source not found.], ordered-deny-overrides 

[15, Error! Reference source not found.], weak-majority and strong-majority [17]. 

8 Properties and Checking Properties  

We have now illustrated how to construct a model that encompasses the rules and policies joined 

together with a combining scheme. The simple state machines previously shown are examples of 

such models. Once the model is complete, different questions called properties can be asked and 

checked against this model. Figure 1 described earlier is as a pictorial representation of this 

process.  

Just like a database is a model of an organization’s explicit and implicit business data objects and 

their relationships, our model depicts an organization’s security and operational business rules 

and their relationships. With a database we can use a language such as SQL [3] to specify and 

ask questions of the model such as show all the accounts receivable that are more than 30 days 

overdue.  

We can ask similar questions about security and operational business rules models. To do this, 

we can encode a property much like a rule and then provide it as input to the model checker that 
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has been programmed with the REA and state machine representation and combination of the 

rules, policies and policy sets. An example from earlier in the paper (Section 5) is shown next.  

Example Assumption or premise (p-rule1): Resource(savings accounts) ∧ Event(deposit) ∧ 

Agent(teller)∧ RELRE(savings accounts, deposit) ∧ RELAE(teller, deposit)  

Conclusion or consequence (q-rule1): DepositAccess(Permit)  

We do not know if this property is correct until it has visited one or more states in the state 

machine representing the model. Therefore we must have a method of specifying this property 

such that the model checker ensures that it visits all states until the property is either satisfied or 

not.  

We encode this requirement in the property by using the word always to enclose both the 

assumption and conclusion. When visiting the states every time the assumption holds the 

conclusion should eventually hold and we use the word eventually in this case.  

Therefore we should rewrite the example as: Always (Resource(savings accounts) ∧ 

Event(deposit) ∧ Agent(teller)∧ RELRE(savings accounts, deposit) ∧ RELAE(teller, deposit) → 

Eventually (DepositAccess(Permit)))  

These two operators always and eventually are usually written as      and ◊, and are operators in a 

language called Linear Temporal Logic (LTL) [10]. LTL is used for the purpose of specifying 

and querying properties of the models in a manner similar to the approach of creating and 

processing queries with databases.  

Another example of a question or property is “It is always the case if an individual is a teller, 

then he or she cannot eventually close a loan account.” The property, just stated, without the 

relationships as described in the previous paragraph can be expressed in LTL as follows: 

      (teller ∧ loanaccount ∧ close → ◊deny). 

This property can be converted to a property pattern by substituting Agent Resource and Event 

into the expression so it becomes 

      (Agent ∧ Resource ∧ Event → ◊permit) OR 

      (Agent ∧ Resource ∧ Event → ◊deny). 

Then a property can be expressed as it is always the case that an Agent can perform an Event on 

a Resource and this is eventually permitted or denied. There are several other patterns that 

express properties and that can be used in this way [11]. Here we are just indicating possibilities. 

 

9 Related Work 

Gal et al. [18, 19] use a UML [21] version of REA and the notion of roles and permissions that 

also exist in RBAC to specify controls in a business model. A permission is described using the 

Object Constraint Language (OCL) [20] a constraint language for object-oriented designs in 

UML. Part of the specification contains a hierarchical approach that is used to show how an 
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authorization may be delegated. Each permission can put the system into one of several states 

depending on the degree to which the permission has been violated. Such an approach fits well 

with assessing the adequacy of internal controls such as required in an audit or when determining 

whether legislation such as Sarbanes Oxley has been violated. Each rule or policy is treated 

independently and there is no discussion of potential interactions among them. This could be a 

serious drawback when applying the technique to a complex system such as typified by an ERP 

where as many as 3,000 separate controls could exist [19]. 

In contrast our approach not only models rules but also policies and policy sets which are 

combinations of rules and policies respectively. Our language is also based on REA concepts to 

define rules. This language has a formal basis in that the rules are expressed in a mathematical 

form and then combined to produce policies and policy sets using a mathematical structure called 

a state machine. The rules and the state machine can be translated into the language of automated 

tools called model checkers that provide support for policy analysis. In effect the tools and the 

formal model allow us to check if a policy or policy set satisfies certain properties. In contrast 

the work described in [18,19] does not have automated support to examine violations. Although 

RBAC is used to illustrate our approach, the methods are quite general and should be able to be 

applied to any business model and policy set that can be made explicit. 

10 Conclusions  

In this paper we have proposed an approach to describing security and operational business 

policies and verifying their correctness with respect to a set of properties. The method is based 

on the REA business modeling language to construct definitions of security and operational 

business rules. Once the rules are created their representations are combined into policies and 

policy sets using state machines.  

To check policy set correctness, these policies can then be encoded in such a way that they may 

be used with a model checker, a software tool that supports automated analysis. This analysis 

compares a set of desired properties against the model. In order to ensure completeness of the 

analysis, the properties are expressed in Linear Temporal Logic or LTL. Adding new rules and 

new properties becomes as simple as adding new states or new properties in LTL.  

The provision of such languages as LTL and of tools such as model checkers allows the 

determination of the correctness of security or operational business policies with respect to a 

specified set of properties. This is quite advantageous because as the system evolves hundreds of 

rules and their associated policies can be verified at the push of a button.  
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